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Abstract

This paper reports the results of a Monte Carlo
investigation of Type I errors in the single group repeated
measures design where multiple measures are collected from each
observational unit at each measurement occasion. The Type I
error of three multivariate tests were examined. These were the
doubly multivariate F test, the multivariate mixed model F test,
and a recently proposed multivariate extension of Mauchly's
sphericity test. The study examined the efficacy of using the
latter test as preliminary test to evaluate the tenability of the
multivariate sphericity assumption made by the multivariate mixed
model F. The study also examined the impact of violations of the
multivariate sphericity assumption upon the Type I error control
of the multivariate mixed model F.

The results indicate an analysis strategy for the researcher
confronted with the task of analyzing data gathered using this
research design. Example data sets are presented to illustrate
three likely patterns of behavioral data. The data analysis
strategy is discussed as it relates to each data set.
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Type I Error in the Single Group Repeated Measures Design
with Multiple Measures per Occasion

Introduction

Behavioral scientists often find it necessary, or desirable,
to measure a dependent variable on some observational unit
(usually subjects) under more than one treatment condition. A
research design structured such that a sample of units is
observed on more than one occasion has been described by a
variety of terms: treatment bi subjects (Lindquist, 1953),
two-way mixed model (Scheffe, 1959), single factor repeated
measures (Winer, 1971), design on the occasions (Bock, 1975),
randomized block (Kirk, 1982), and single factor within-subjects
(Keppel, 1982).

The necessity of using repeated measures designs often
occurs since much data naturally exist in this form (McHugh,
Sivanich and Geisser, 1961; Rich, 1983). This occurs since many
behavioral and physiological attributes are of or;mary interest
as they vary over time, and under different treatment conditions.

Behavioral scientists may find a repeated measures design
desirable since subjects serve as their own control. This has
the effect of reducing that part of error variance which can be
attributed to between group subject heterogeneity in a factorial
design. As a result, statistical power is increased relative to
the factorial alternative and fewer subjects are required for
study.

Data gathered in a single group repeated measures design can
be inferentially tested using two distinctly different methods of
analysis. These two analyses can yield different results
depending upon the nature of the data. The first analysis is the
classic mixed model repeated measures analysis of variance
(Scheffe, 1959). The second analysis tests the same hypothesis,
but is conducted as a multivariate analysis of variance (Timm,
1975).

Extensions of both the mixed model test and the multivariate
test have been proposed for repeated measures research designs in
which more than one dependent variable is observed in each
subject on each occasion. The extension of the mixed model test
is termed the 'multivariate mixed model' test (Bock, 1975). In
this analysis, the usual mixed model sums of squares are replaced
with sums of squares and cross products matrices which contain
information on all of the dependent variables. In addition to
the assumptions of the mixed model test, the multivariate mixed
model test rests upon the even more stringent assumption of
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sphericity in each of the dependent variables and constant
variance-covariance structure among the dependent variables
across occasions, i.e., multivariate sphericity, (Timm, 1980).

The extension of the multivariate test is termed the 'doubly
multivariate' test (Bock, 1975). This term refers to the fact
that the multivariate approach to repeated measures is used to
analyze multiple dependent measures on each unit at each
occasion. In addition to the assumptions for the multivariate
test, the doubly multivariate test assumes constant structure of
the variance-covariance matrices for the dependent variables
across occasions. In this analysis, n must exceed the hypothesis
degrees of freedom (i.e., (k-1)p, where k is the number of
measurement occasions, and p is the number of dependent
variables).

Both tests have the advantage of considering all of the
dependent variables, and their inter-relationships, at the same
time. This means that a researcher can examine how the dependent
variables are affected, as a whole, by the treatments. If the
dependent variables accurately represent the theoretical
construct, a researcher is in an enhanced position to discuss
that construct relative to a colleague testing a single dependent
variable, or testing multiple dependent variables independently.

Statistical Models: One Dependent Variable per Occasion

The Multivariate Model

Using the full rank model, the general form of the
multivariate null hypothesis for a design with g groups, k
repeated measures, and one dependent variable per occasion is:

H0: ABC' = L..

where A is a g-1 x g contrast matrix representing the between
group hypothesis, B is a g x k matrix of cell means, and C is a
k-1 x k contrast matrix representing the within factor hypothesis
(Timm, 1975; Timm and Ca "lson, 1973). This paper is concerned
with the single group repeated measures design where there is no
between group hypothesis. Since, ;n this case g = 1, the matrix
A is a scalar set at unity. The matrix D is usually a null
matrix.

The multivariate sums of squares and cross products matrices
(SSCP) for the hypothesis (H) and error (E) are given by:

H = CB' (X'X)-1 BC'

J

, and (1)
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A A
E = C (Y-Y)'(Y-Y) C' , (2)

where B is a 1 x k vector of the treatment means over the k
occasions, and X is a design matrix. Here, X is an n x 1 vector
of ones, where n is the number of subjects. The matrix C is the
k-1 x k contrast matrix, and Y is an n,,z( k matrix containing the
n vectors of observations. The matrix Y is obtained using Y =
XB.

The omnibus multivariate repeated measures hypothesis can be
tested using

A= IEI / IE * HI (3)

where A is Wilks's likelihood ratio criterion (Wilks, 1932) with
k-1, 1, and n-10.1 degrees of freedom, and IEI denotes the
determinant of the matrix E. In the single group case, other
multivariate tests (i.e., Roy's largest root, etc.) all share
this distribution.

A multivariate F statistic can be obtained by

F = [(1-A)/ A ] (v1 /v2) (4)

where v
1

are the k-1 hypothesis degrees of freedom, and
v2 are the n-10.1 error degrees of freedom. When k = 2, the
mixed model test and the multivariate test are identical.

The Mixed Model

If the contrasts in C are row-wise orthonormal, the omnibus mixed
model test statistic can be obtained from Equations 1 and 2. The
omnibus mixed model test statistic obtained through the
multivariate model is given by

F = [tr(H)/vi] / [tr(E) /v2] , (5)

where tr is the trace of a matrix, v1 are the k-1 hypothesis
degrees of freedom, and v2 are the (k-1) (n-1) error degrees
of freedom.

Alternatively, the mixed model SSCP matrices for the
hypothesis (T) and error (M) are given by

T = [(C#1)Y]' [(C#1)(C#1)1-1 [(C#1)Y] , and (6)

M = [(C#Z)Y]' [(C#Z)(C#Z)']-1 [(C#Z)Y] (7)

The matrix 1 is a vector of n ones. The matrix C is a k-1 x k

6
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matrix of simple contrasts on the repeated measures. The matrix
Z is an n-1 x n contrast matrix representing the main effect
hypothesis on the subjects as a random effect. The operation #
denotes the Kronecker product of two matrices. Note that the
Kronecker product of C and 1 defines the treatment effect, and
that the Kronecker product of C and Z defines the treatment by
subjects interaction effect. The nk x 1 vector Y contains the
dependent variable observations ordered by treatments, and
subjects ordered within the treatments. The design matrix X is
actually an identity matrix of order n. These alternate
expressions are useful in developing the p > 1 generalization of
the mixed model.

Both T and M in Equations 6 and 7 are scalars. These are
the traditional mixed model sums of squares for hypothesis and
error, respectively. They are divided by their appropriate
degrees of freedom [k-1 and (n-1)(k-1), respectively] to obtain
the mean square values for the traditional ratio of mean squares.
The F test given by this ratio of mean squares is equivalent to
Equation 5.

The Mixed Model and Sphericity. E.senhart (1947) stated that
the mixed model F test was valid only when the correlations among
the repeated measures were all zero. This assumption was later
modified to state that the variances among the repeated measures
must be equal, and that the covariances among the repeated
measures must be equal. Said another way, the test assumes zero,
or constant, correlations among the repeated measures. This
latter condition has been termed 'uniformity' (Davidson, 1972),
as well as 'compound symmetry' (Winer, 1971, p. 136).

Huynh and Feldt (1970) and Rouanet and Lepine (1970) showed
that uniformity was a sufficient, but not a necessary condition
for an exact distribution of F in Equation 5. They demonstrated
that a less restrictive structure of the variance-covariance
matrix is both necessary and sufficient for the test in Equation
5 to be distributed as F. Huynh and Feldt (1970) referred to
this condition as 'sphericity', while Rouanet and Lepine (1970)
used the term 'circularity'. In this paper the term 'sphericity'
is used. Both Huynh and Feldt (1970) and Rouanet and Lepine
(1970) showed that uniformity always implies sphericity, but that
sphericity does not always imply uniformity.

Sphericity is held if, and only if,: (1.) ti;e distribution
of the repeated measures observations in the matrix Y is
multivariate normal, and (2.) CXC' = s21, where C is a k-1 x k
orthonormal contrast matrix, X is the population
variance-covariance matrix, and I is an identity matrix of order
k-1. The element s2 is a scalar > 0 which represents the common

7
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population variance on each of the contrasts in C (Boik, 1981).

Testing sphericity, Mauch ly (1940) proposed a test to
determine if GIG' = s2I is a tenable assumption for a sample of
data. Mauchly's test for uniformity addresses the hypothesis
that a sample of variates was selected from a population where
the variances are all equal, and the covariances are all zero
(i.e., 321). Therefore, Mauchly's test is applied to the CSC'
matrix. Note that this special case of compound symmetry (i.e.,
zero correlations) for the CSC' matrix represents, by definition,
sphericity among the original variables. Mauchly's test is
defined by Huynh and Feldt (1970) as

X2 = -(n-1)In(w)d (8)

d = 1 - (2(k-1)2 (k-1) 2) / [6(k-1)(n-1)] (9)

w = ICSCI / [tr(CSC') / (k-1)]-2 . (10)

The test statistic in Equation 8 is evaluated as Chi-square with
[(k-1)k/2] -1 degrees of freedom. Nargarsenker and Pillai
(1973), among others, have described the exact distribution of
the criterion w, thus eliminating the need for using the
Chi-square approximation.

Mauchly's (1940) test is applied to a sample of data before
conducting the repeated measures analysis of variance. It
follows that rejection of the null hypothesis indicates that a
mixed model test would not be valid (Rogan, Keselman, and
Mendoza, 1979.) Therefore, the data require an alternate test
statistic. Three studies have investigated the efficacy of
Mauchly's test as a preliminary test of sphericity.

Huynh and Mandeville (1979) conducted a Monte Carlo
investigation of the Type I error performance of Mauchly's test
under conditions of normality and non-normality. The non-normal
conditions were variations of kurtosis (i.e., light tailed and
heavy tailed). They found that under normality, Mauchly's test
showed good agreement between the actual and nominal alpha levels
(i.e., the test was neither conservative nor liberal). Under
light tailed distributions (i.e., ieptokurtosis), the test
performed conservatively with discrepancy of the actual and
nominal alpha levels increasing as n increased. The test
performance under heavy tailed distributions (i.e.,
platykurtosis) was excessively conservative. Huynh and
Mandeville (1979) concluded that Mauchly's test was useful as a
preliminary test of sphericity for normal and light tailed
distributions. The authors stated that since behavioral data
will likely vary from normality in the light tailed direction,

8
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Mauchly's test is a useful preliminary test of sphericity for
behavioral data.

This issue is clouded by a pair of studies which concluded
that Mauchly's test does not need to be conducted. Rogan,
Keselman and Mendoza (1979) and Keselman, Rogan, Mendoza and
Breen (1980) reported results which appear to represent different
aspects of the same study. In these two studies, the authors
varied not only normality, but also departures from sphericity,
in a Monte Carlo study of the Type I error rate and the
statistical power of Mauchly's test. One of the conditions of
non-sphericity was designed to represent what would probably be a
trivial departure from sphericity for the practitioner. Another
non-sphericity condition represented what Huynh and Feldt (1976)
have suggested is generally the lower limit of non-sphericity in
educational data. Two additional conditions represented more
severe violations of the sphericity assumption.

Rogan et al. (1979) and Keselman et al. (1980) found that
Mauchly's test was very sensitive to departures from normality,
and to departures from the null hypothesis: H0: CICI =
s21. They suggested that the rejection rate for Mauchly's test
of sphericity was so high, even for mild departures, that a
researcher might as well assume non-sphericity when analyzing
repeated measures data.

Thomas (1983) commented that the excessive conservatism
found by Keselman et al. (1980) might be attributed to the
relatively large n (i.e., 39) used in that study. This
observation is supported by Huynh and Mandeville's (1979) finding
that, under non-normality, the actual alpha level decreased as n
increased. This notion led Thomas to suggest that preliminary
testing of sphericity may be a useful analytical strategy when n
is relatively small.

The sphericity index. Under a violation of sphericity, F is
not distributed with (k-1) and (k-1)(n-1) degrees of freedom.
Box (1954) demonstrated that a multiplicative correction factor
for these degrees of freedom is defined by

e =

(k-1)

9
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(ithe ( = 1, 2,...k-1) are the k-1 eigenvalues of C1C.
That is, Box (1954) showed that the mixed model F is

approximately distributed as F[(k-1)e ,(n-1)(k-1)6 1. Note that
if the A's are all equal, e equals 1; and equals a fraction
otherwise. Rogan, Keselman, and Mendoza (1979) gave an
equivalent form of Equation 11 as

[tr(CIC')]2
e (12)

(k-1) tr(CiC)2

The value of e is an index of sphericity. Geisser and Greenhouse
(1958) showed that e is bounded by 1 and 1/(k-1). Sphericity is
held when e = 1, and ir, maximally violated when e = 1/(k-1).
le of (1962) recognized that if C I C' is positive definite, can

'approach, but not equal, 1/(k-1).

Statistical Models: Multiple Dependent Variables per Occasion

The Doubly Multivariate Model

The doubly multivariate repeated measures analysis of
variance is a direct extension of the multivariate approach to
repeated measures analysis of variance for the single dependent
variable case. The dimensions of the matrix Y are expanded to n
x kp, where p is the number of qualitatively different dependent
variables. This simply means that the n x k r4ktices of
observations for each of the dependent variables are concatenated
horizontally to form Y. The doubly multivariate sums of squares
and cross products matrices are given by

H* = (I#C) B' (X'X) -1 B(I#C)' and, (13)
A A

E* = (I#C) (Y-Y)'(Y-Y) (I#C)' (14)

where I is a p x p identity matrix. The I#C operation is a
convenient method for developing a contrast matrix for the doubly
multivariate hypothesis. As a result of this operation, the same
contrasts will be applied to each of the dependent variables.
However, it should be noted that a contrast matrix representing
different hypotheses for different dependent variables can be
constructed.

Once again, the multivariate test statistic A, is found
using A = I E* I / I E* H* I. A multivariate F statistic
can be found using Equation 4 with (k-1)p hypothesis degrees of

10



Multivariate Data with Repeated Measures

10

freedom, and M + 1 - ((k-1)p/2) error degrees of freedom, where M
= (n-1) - ((k-1)p/2).

The Multivariate Mixed Model

When k = 2, the multivariate mixed model and the doubly
multivariate F statistics are the same. When k > 3, the SSCP
matrices for the mixed model multivariate test cannot be derived
directly from the doubly multivariate H* and E* matrices by using
a convenient matrix operation such as the trace of a matrix.
However, Timm (1980, p. 73) has shown that the elements of the
mixed model multivariate mean square matrices can be obtained by
hand from the doubly multivariate mean square matrices. As in
the single dependent variable analysis, this derivation can be
made only when the contrasts in C are orthonormai. Timm's
procedure can also be applied to SSCP matrices. In essence, one
sums the contrast variances for each dependent variable, and sums
the covariances on each contrast for each pair of dependent
variables.

In the p > 1 generalization of Equations 6 and 7, the
multivariate mixed model SSCP matrices for the hypothesis (T*)
and error (M*) are obtained using

T*= [(C#1)YJ' [(C#1)(C#1)'1-1 [(C#1)Y] , and (15)

M* = [(C#Z)Y]' [(C#Z)(C#Z)']-1 [(C#Z)Y] . (16)

Here, the matrix 1 is a row vector of n ones, and C is a k-1 x k
contrast matrix. The matrix of observations for the multivariate
mixed model is arranged in the mixed model with the additionai p
row vectors of observations being horizontally concatenated.

The sums of squares and cross product matrices in Equations
15 and 16 are used in I M* I / 1 M* + T* I to obtain the
multivariate test statistic A. A multivariate F statistic is
then given by

where

F = [(1- As As / (v1 /v2) (17)

s .z.
al p (k-1) - 4

111 p2 ' (k-1)2 - 5
(18)

when (k-1)p > 2, and equals unity otherwise. In Equation 17,

11
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v1 and v2 are used to denote the mixed model multivariate
hypothesis and error degrees of freedom respectively. The F
statistic has (k-1)p hypothesis degrees of freedom, and

(n-1))(k-1)s + 1 - (k-1)p/2 (19)

error degrees of freedom.

Multivariate Sphericity. The multivariate mixed model
analysis assumes not only sphericity of the variance-covariance
matrix associated with each of the dependent variables, but that
the variance-covariance structure among the dependent variables,
across occasions, is the ;,ame (Timm, 1980). That is,

V1 = V2 = V3 ... =Vi =V,

(iV.
1

( = 1,2, ... k) is the variance-covariance matrix for
the dependent variables at the ith occasion, and where V is the
common variance-covariance matrix of the dependent variables for
all k occasions.

Testing multivariate sphericity. Thomas (1983) extended
Mauchly t st of sphericity for p = 1 to the any p case. Let D
= (1/p)M*. Further, let ti be the natural log of the ith
eigenvalue in Equation 14, and let ui be the natural log of
the ith eigenvalue of D. Then Thomas's extension of Mauchly's
test is given by

K-i K-1

X2 = ng[(k-1)EI
I

u. -Et.],
i =1 i_1

(20)

where g is the number of groups. This Chi-square is evaluated
with

P(k-2) [P(k-1) + p + 1]

2

degrees of freedom.

(21)

Comparison of the Two Models

As in the single dependent variable case, when k = 2, the
multivariate mixed model and the doubly multivariate analyses
yield identical test statistics. However, when k > 3, the
results of the two analyses can vary depending upon the nature of

12
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the data being tested.

Jensen (1982) conducted an empirical analysis of the
statistical power of the multivariate mixed model test, and of
the doubly multivariate test. Jensen was able to define
asymptotic bounds for the uniform power dominance of one, or the
other, test. However, Jensen's results apply only to the
restrictive condition of independence among the p measures (i.e.,
zero correlations). In order to discuss Jensen's findings, let R
be a correlation matrix of the p measures over the k occasions,
and let C be a k-1 x k orthonormal contrast matrix. Further, let
Q = (I#C)(R-1)(1#C)1, where I is an identity matrix of order p.
Jensen (1982) was able to show that under independence of the
measures, when Q is nositive definite, the doubly multivariate
test will uniformly dominate the multivariate mixed model test,
in terms of statistical power. This power domination is reversed
when Q proves to be negative definite. For those cases where Q
is indefinite, Jensen (1982) provided a method for calculating
the estimated bounds of the two tests.

Conclusions

Although the mixed model test rests upon the stringent
sphericity asssumption, several lines of investigation have
provided the data analyst with some analysis options. After
considering Type I and Type II error, Barcikowski and Robey
(1984a, 1984b) recommended the application of both the
multivariate test and the mixed model test (corrected for e).
They suggest splitting the a priori alpha equally between the
tests.

However, less information is available concerning the p > 1
case, and a preferred analysis strategy is not clearly indicated.
Based upon literature concerning sphericity for p = 1 (i.e.,
Huynh and Mandeville, 1979; and Keselman, et al., 1980), some
.::1mple problems, and a small simulation study, Thomas (1983)
c e to the following conclusions. The choice between the doubly
multivariate model and the multivariate mixed model analyses for
a test statistic rests upon the outcome of the extended Mauch ly
test (i.e., the Mauchly-Thomas test). If the Mauchly-Thomas
Chi-square is significant, the practitioner should submit the
data to the doubly multivariate analysis since the multivariate
sphericity assumption of the multivariate mixed model is not
satisfied. If the extended Mauch ly test turns out to be
insignificant, the multivariate mixed model should be employed
since it seems more powerful than the doubly multivariate
analysis considering the results of the simulation study.
However, Thomas (1983) cautioned that this apparent power
differential and the performance characteristics of the

13
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Mauchly-Thomas test require further study.

Purposes of the Present Study

The purpose of the present Monte Carlo investigation was two
fold. First, the study was designed to estimate the "type I error
rate of the Mauchly-Thomas Chi-square statistic. Considering the
results of Rogan et al. (1979) and of Keselman et al. (1980) for
Mauchly's original test in the p = 1 case, this aspect of the
study was extended to include an estimate of the sensitivity of
the Mauchly-Thomas test to departures from its null hypothesis.

Secondly, the present investigation sought to estimate the
Type I error rate of the multivariate mixed model F test since
its sampling distribution is not known under departures from the
multivariate sphericity assumption. Given Huynh's (1978) finding
that the mixed model test for the p = 1 design is not robust with
respect to even ..mall departures from sphericity, it seems
reasonable to eximine the multivariate extension of this test for
the p > 1 design. Since the sampling distribution of the doubly
multivariate F test is known, and since it does not assume
multivariate sphericity, this statistic was calculated in all
simulations as one accuracy check of the simulation procedure.

Method

Independent Variables

A Monte Carlo analysis was conducted for each combination of
the various levels of the following independent variables. Each
of these combinations are referred to as a Monte Carlo problem.
The three test statistics of interest (i.e., the multivariate
mixed model F, the doubly multivariate F, and the Mauchly-Thomas
Chi-square) were calculated from 2000 samples for each Monte
Carlo problem.

Occasions. The number of the k occasions comprising the
research design was varied at 3, 5, and 7.

Dependent variables. The number of dependent variables in
the design was varied at 2 and 3.

Violations of multivariate sphericity. Halperin (1976)
advocated improving the efficiency of Monte Carlo studies through
what he called 'variance reduction'. In repeated measures
designs at the p = 1 level, such variance reduction is
accomplished by generating data from a GIG' matrix which has
been reduced to its canonical form (i.e., a diagonal matrix of
k-1 eigenvalues.) This practice is much more efficient than

14
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generating data from the original variance-covariance matrix for
the k occasions. However, the writers are not aware of an
analogous canonical form for a CXC' matrix which is actually a
super matrix. Therefore, the data were generated from the kp x
kp variance-covariance matrix of the original variables. The
structure of the variance-covariance matrices was fashioned after
Timm (1980). That is, a variance-covariance matrix was organized
by k across the levels of p.

The source of the violations of multivariate sphericity was
limited to the k x k component variance-covariance matrix for
each dependent variable along the diagonal. In the first
condition, multivariate sphericity was held, i.e., e = 1 for all
of the dependent variables. In the second condition, each
dependent variable demonstrated a 'mild' departure from
sphericity, i.e., e = .95. This condition represented small
departures from multivariate sphericity which many researchers
would probably ignore. In the third condition, c for each of the
dependent variables equaled .75. This condition represented
a'moderate' departure from multivariate sphericity. The
selection of this value is based upon Huynh and Feidt's (1976)
finding that the lower limit of e in practice is approximately
.75. Copies of the matrices used in this study are available
upon request.

Correlations among the dependent variables across occasions.
The constant correlations among the dependent variables, across
occasions, were varied at r = .2, .5, and .8. All other
correlations among the various levels of k and p were set at 0.
The correlations were represented in the diagonal elements of the
k x k component matrices of each super matrix.

Sample sizes. Based upon Davidson (1972), the number of
observations in the research design was varied at p(k-1) 3,
p(k-1) 10, and p(k-1) 20. 'These sample sizes represented
small, moderate, and moderately large n's relative to p(k-1).

Nominal alpha levels. The nominal alpha level for all tests
was varied at .01 and .05.

Dependent Variables

The Monte Carlo dependent variable was the proportion of the
2000 calculated test statistics which exceed the tabled critical
value for that test. For each Monte Carlo problem, a proportion
of exceedance was calculated for each of the three test
statistics being evaluated.

A check on the validity of the Monte Carlo analysis was

15
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conducted for those Monte Carlo problems where multivariate
sphericity was held. This check, given by Olson (1973), is
called the Monte Carlo critical value. The definition of the
Monte Carlo critical value may best be explained by way of
example. For instance, when alpha (a ) is set at .05 and 1000
samples are observed, the Monte Carlo critical value is the mean
of the 50th and 51st largest of the 1000 calculated test
statistics. This value should approximate the tabled critical
value for alpha at .05. A general definition of the Monte Carlo
c. itical value states that it is the mean of the (Na )th and the
(Na +1)th largest of the N calculated test statistics.

Data Generation

A FORTRAN subroutine, GGNSM, from the International
Mathematical and Statistical Libraries, Inc. (IMSL, 1982) was
used to generate multivariate normal data for each of the
variance-covariance matrices. GGNSM first generates multivariate .

normal vectors of random numbers, N(0,I). Then using Choiesky
decomposition, the input variance-covariance matrix is decomposed
to an upper triangular matrix, U, such that UU' = 2 . The N(0,I)
vectors of data in some matrix, say Z, are then transformed to
N(0,2) through ZU'.

The data for a given variance-covariance matrix were
generated in one execution of a program using multiple calls to
GGNSM. The initial seeds for GGNSM were selected from a table of
random numbers. GGNSM generates new seeds upon successive calls.
The output data were written directly to tape.

Calculation of the Statistical Tests

The three statistical tests of interest were calculated via
a G level FORTRAN program developed specifically for this
purpose. Photocopies of the program are available upon request.

Statistical Hypotheses

Null Hypotheses. The null hypothesis for those Monte Carlo
problems where the independent variable, nominal alpha, was set
at .01, is written as

H0: P = .01,

where P represents a proportion. Likewise, the null hypothesis
for those Monte Carlo problems where the independent variable,
nominal alpha, was set at .05, is written as

H0: P = .05,
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Alternate Hypotheses. The alternate hypothesis for those
Monte Carlo problems where the independent variable, nominal
alpha, was set at .01 is written as

$ .01HA: P .01,

Similarly, the alternate hypothesis for those Monte Carlo
problems where the independent variabIc, nominal alpha, was set
at .05 is written as

HA: P $ .05,

Statistical Analyses

It was decided that departures of .01 from the nominal
alpha of .01, and that departures of * .02. from the nominal
alpha of .05 would constitute meaningful differences between
nominal and actual alpha levels.

A two-tailed test for proportions described by Cohen (1977,
p. 213) was used to analyze the results of the Monte Carlo
problems. In those Monte Carlo problems where the null
hypothesis of multivariate sphericity was known to be false, the
proportions test was not conducted for the Mauchly-Thonas
Chi - square. results. Indeed, for these research problems, the
number of times which the null hypothesis was rejected provided
some idea of the statistical power of the Mauchly-Thomas test.
The a priori alpha level for all applications of Cohen's (1977)
test was set at .01.

The desired minimal statistical power for all applications
of the proportions test was set at .80. Following the method for
establishing sample size described by Cohen (1977), it was
determined that 1678 observations were needed for H0: P =

.01, and that 1635 observations were needed for H0: P = .05.
As a matter of convenience, 2000 observations were collected for
each Monte Carlo problem. As a result, statistical power
exceeded .80 in all of the analyses.

Results

This section is organized in two major segments. The actual
alpha rates for the various Monte.carlo problems are presented in
the first segment. These results are summarized in Tables 2
through 10. In the second segment, the Monte Carlo critical
value results are reported. These results are summarized in
Tables 11 through 16. All tables are found in the Appendix.

Table 1 can be used to facilitate the interpretation of
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Tables 2 to 10. Table 1 contains the calculated sample sizes
used for each combination of k (3, 5 and 7), p (2 and 3), and n
[(k-1)134.3, (k-1)134.10, and (k-1)134.20].

Actual Alpha Rates

The doubly multivariate test. The actual alpha levels for
the doubly multivariate F tests are found in Tables 2 through 4.
The actual alpha levels in Table 2 were obtained in Monte Carlo
problems where multivariate sphericity was maintained. The
actual alpha levels in Tables 3 and 4 were obtained in Monte
Carlo problems which, respectively, represented the conditions of
mild and moderate departures from multivariate sphericity.

As expected, the doubly multivariate F test controlled Type
I error across the range Monte Carlo problems. However, on three
isolated occur ranrtas, the two-tailed proportions test rejected
its null hypothesis. The first occurrence is found in Table 3
with the remaining two occurrences appearing in Table 4. The
three Monte Carlo problems are defined as follows.

Departure from Correlation
Multivariate Among p Nominal
Sphericity Across k k p n Alpha

1. mild .2 5 2 (k-l)p+20 .01

2. moderate .2 3 3 (k-l)p+20 .05

3. moderate .8 5 3 ;k- 1)p+20 .01

The only characteristic that all three Monte Carlo problems
share is sample size, i.e., n = (k-1)134.20. Otherwise, these
three problems do not seem to be linked by an overall pattern,
nor do they seem to represent a pattern among the independent
variables. Although the absolute value of the difference between
the actual alpha level and the nominal alpha level are
significantly different in all three problems, each of the actual
alpha levels are within the appropriate specified tolerances,
i.e., between .00 and .02 for nominal alpha at .01, or between
.03 and .07 for nominal alpha at .05. The three rejections in a
total of 324 tests represent a Type I error rate for the
two-tailed proportions test of .00925. This is in good agreement
with the a priori alpha level set at .01. It seems reasonable to
conclude that the doubly multivariate F test demonstrated
appropriate Type I error control.
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The multivariate mixed model test. The actual alpha levels
for the multivariate mixed model F tests are found in Tables 5

through 7. The actual alpha levels in Table 5 were obtained in

Monte Carlo problems where multivariate sphericity was
maintained. The actual alpha levels in Tables 6 and 7 were
obtained in Monte Carlo problems which, respectively, represented

the conditions of mild and moderate departures from multivariate

sphericity.

As can be seen in Table 5, the multivariate mixed model F

test controlled Type I error when multivariate sphericity was

maintained. The null hypothesis of the two-tailed proportions
test was rejected on one occasion. The Monte Carlo problem in

this case was defined by k at 3, p at 3, the correlation among

the dependent variables across occasions at .5, n at (k-1)p'3,
and nominal alpha at .01. The actual alpha of .004 for this
Monte Carlo problem is within the tolerance specified for a
nominal alpha of .01, i.e., between .00_and .02 for nominal alpha

at .01. This Monte Carlo problem does not seem to characterize

any pattern among the independent variables. This single
rejection in a total of 108 Monte Carlo problems represents a

Type I error rate of .00925 for the two-tailed proportions test.
This is in good agreement with the a priori alpha level of .01.

The actual alpha levels obtained for the multivariate mixed

model F test under the condition of a mild departure from

multivariate sphericity demonstrated good control of Type I

error. Only one Monte Carlo problem resulted in a rejection
the null hypothesis of the two-tailed proportion test. The Monte

Carlo problem in this case was defined l k at 3, p at 3, the
correlation among the dependent variables 'cross occasions at .5,

n at (k-1)p+10, and nominal alpha at 01-i. The actual alpha level

of .071 for this Monte Carlo problem represents a modest

departure from the specified tolerance for nominal alpha set at

.05, i.e., between .03 and .07 for nominal alpha at .05. In

general, when compared to the results in Tables 2 through 5, a
fewer number of the actual alpha levels in Table 6 are less than

the nominal alpha level. That is, under a mild departure from
multivariate sphericity, the actual alpha levels for the
multivariate mixed model F test were, in general, slightly
elevated for each combination of the independent variables.

A large majority of the actual alpha levels reported in

Table 7 represent a significant difference from the corresponding

nominal alpha levels. The exceptions, those 14 Monte Carlo
problems where Type I error was controlled, are summarized in

Table 17. The 14 Monte Carlo problems do not seem to represent

any pattern among the 108 problems which come under the condition

of a moderate departure from multivariate sphericity.
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Interestingly, the actual alpha level for each of these 108
Monte Carlo problems exceeds the nominal alpha. Further, it
should be noted that while most of the actual alpha levels
significantly depart from their nominal alpha level, none of the
departures are drastic in nature. In Table 7, the largest actual
alpha for a nominal alpha of .01 was .033, and the largest actual
alpha for a nominal alpha of .05 was .086.

The Mauchly-Thomas chi-square test. The actual alpha levels
for the Mauchly-Thomas Chi-square tests are found in Tables 8
through 10. The actual alpha levels in Table 8 were obtained in
Monte Carlo problems where multivariate sphericity was
maintained. The proportions of rejection in Tables 9 and 10 were
obtained in Monte Carlo problems which, respectively, represented
the conditions of mild and moderate departures from multivariate
sphericity. Because the null hypothesis of multivariate
sphericity was known to be false, the two-tailed proportions test
was not conducted on the results found in Tables 9 and 10.
Rather, the proportions of rejection in these two tables provide
an estimate of the statistical power of the Mauchly-Thomas
Chi-square statistic.

The actual alpha levels of the Mauchly-Thomas Chi-square
statistic, under the null hypothesis of multivariate sphericity,
are found in Table 8. Every actual alpha in this table is
significantly greater than its nominal alpha. Two patterns in
Table 8 are clear. First, the Type I error rate decreases as the
sample size becomes larger. Secondly, the Type I error rate
increases as k and/or p increases.

The proportions of rejection for the Mauchly-Thomas
Chi-square statistic under a mild departure from multivariate
sphericity, found in Table 9, demonstrate similar patterns. That
is, the proportions of rejection decrease with an increase in
sample size, and increase with an increase in k and/or p.
However, as sample size becomes larger, the drop in the
proportions of rejection is substantially less. This suggests
that under a mild departure from the null hypothesis, the
Mauchly-Thomas Chi-square statistic behaved much like it did
under the null hypothesis with an attenuation of the sample size
effect.

Table 10 contains the actual alpha levels of the
Mauchly-Thomas Chi-square statistic under a moderate departure
from multivariate sphericity. Once again, it can be seen in
Table 10 that actual alpha increased as k and/or p increased.
However, with few exceptions, as sample size increased, the
actual alphas increased as well. This reflects the usual
relationship between effect size (i.e., the degree of departure
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from multivariate sphericity) and sample size. That is, larger
n's are better able to detect departures from the null
hypothesis. As can be seen, with an n of (k-1)p+20, the
Mauchly- Thomas Chi-square statistic is very sensitive to this
moderate departure from multivariate sphericity, i.e., power is
quite good. Even for smaller sample sizes, the power of the
Mauchly-Thomas Chi-square statistic seems to be good for the
higher combinations of k and p.

Monte Carlo Critical Values

Monte Carlo critical values were calculated for all three
multivariate tests in Monte Carlo problems where multivariate
sphericity was maintained. This condition was selected for the
calculation of Monte Carlo critical values because it is the only
condition where the assumptions of all three multivariate tests
are satisfied, and where their null hypotheses are all true. The
Monte Carlo critical values are found in Tables 11 through 16.

The doubly multivariate test. The Monte Carlo critical
values, and the tabled critical values, for the doubly
multivariate F statistic are found in Tables 11 and 12. Table 11
contains the critical values for those Monte Carlo problems where
p was set at 2, and Table 12 contains the critical values for
those Monte Carlo problems where p was set at 3.

In general, the Monte Carlo critical values for the doubly
multivariate F statistic reasonably approximate their tabled
critical value counterparts. The agreement is generally closer
for those values where nominal alpha equals .05. This is because
the critical values for nominal alpha at .01 are located further
out in the tail of the sampling distribution. The largest

'discrepancies between a Monte Carlo critical value and a tabled
critical value are associated with the smallest sample size. In
each of these cases,. the F distribution is based on only three
error degrees of freedom. The sharp slope and the sparseness of
the tail in such a sampling distribution explains these larger
differences. The median percentage of discrepancy for the doubly
multivariate test with nominal alpha set at .01 was 3.77 between
a minimum of 0 and a maximum of 39.7. The median percentage of
discrepancy for the doubly multivariate test with nominal alpha
set at .05 was 44 between a minimum of 0 and a maximum of 16.01.
In comparing Olson's (1973) Monte Carlo results to those of the
present study, one should keep in mind that this study does not
contain a condition where nominal alpha equals .10, and that one
sample size is much smaller than those used by Olson.
Considering these factors, these results compare favorably with
those of Olson's (1973) Monte Carlo study.
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The multivariate mixed model test. The Monte Carlo critical
values, and the tabled critical values, for the multivariate
mixed model F statistic are located in Tables 13 and 14. Table
13 contains the critical values for those Monte Carlo problems
where p was set at 2, and Table 14 contains the critical values
for those Monte Carlo problems where p was set at 3.

In general, the Monte Carlo critical values for the
multivariate mixed model F statistic reasonably approximate their
tabled critical value counterparts. Once again, the agreement is
generally better for those Monte Carlo problems where nominal
alpha was set at .05. The median percentage of discrepancy for
the multivariate mixed model test with nominal alpha set at .01
was 136 between a minimum of .24 and a maximum of 8.74. The
median percentage of discrepancy for the multivariate mixed model
test with nominal alpha set at .05 was 1.23 between a minimum of
0 and a maximum of 5.84. These results also compare favorably
with the Monte Carlo results of Olson (1973).

The Mauchly-Thomas chi-square test. The Monte Carlo critical
values, and the tabled critical values, for the Mauchly-Thomas
Chi-square statistic Table 15 are located in Tables 15 and 16.
Table 15 r ,ntains the critical values for those Monte Carlo
problems where p was set at 2, and Table 16 contains the critical
values for those Monte Carlo problems where p was set at 3.

In all cases, the Monte Carlo critical values for the
Mauchly-Thomas Chi-square statistic exceeded their tabled
critical value counterpart by a wide margin. The median
percentage of discrepancy for the Mauchly-Thomas Chi-square test
with nominal alpha set at .01 was 36.29 between a minimum of
13.43 and a maximum of 96.83. The median percentage of
discrepancy for the Mauchly-Thomas Chi-square test with nominal
alpha set at .05 was 35.11 between a minimum of 122 and a maximum
of 88.68.

Discussion

The Doubly Multivariate Test

Because the doubly multivariate F test does not assume
multivariate Sphericity, it was expected to demonstrate
appropriate Type I error rates. In this context, appropriate
Type I error rate refers to a satisfactory approximation of the
nominal and actual alpha levels. The fact that it did maintain
appropriate Type I error control across all levels of the various
independent variables provides evidence for the precision of the
Monte Carlo procedures.
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The Multivariate Mixed Model Test

As expected, the multivariate mixed model test demonstrated
appropriate Type I error rates when its assumptions were
satisfied. Further, under a mild violation of the multivariate
sphericity assumption (i.e., E = .95 it each of the dependent
variables), the multivariate mixed model test maintained adequate
Type I error control. The liberalness of the multivariate mixed
model test under a moderate departure from multivariate
sphericity is similar in magnitude to the liberalness of the
mixed model test under a departure from sphericity when p = 1.
As a result, the data analyst using a repeated measures design
with multiple measures per occasion runs an increased risk of
increased Type I error if the multivariate sphericity assumption
is not, or is nearly not, satisfied.

Unfortunately, the data analyst in this situation does not
have a modified form of the multivariate mixed model test
available to control Type I error under violations of the
multivariate sphericity assumption. Neither a multivariate
analogue of the correction factor e , which could be applied to
the multivariate mixed model degrees of freedom, or a
conservative form of the multivariate mixed model test, have been
defined. It would seem that the derivation of a correction
factor would involve the quadratic form of vectors, as well as
ratios of central Wisart distributions.

The Mauchly-Thomas Chi-square Test

The most dramatic result of this study is the failure of the
Mauchly-Thomas Chi-square test to demonstrate a satisfactory
sampling distribution under the null hypothesis. Thomas
(personal communication, November 6, 1984) attributes the
elevated Type I error rates for the Mauchly-Thomas Chi-square
under its null hypothesis to the fact that the test is asymptotic
and approaches its true test size only as n approaches infinity.
This is reflected in the Monte Carlo results as a decrease in the
actual alpha levels as n increases. Further, it explains the
elevated Monte Carlo critical values for the Mauchly-Thomas
Chi-square statistic. As sample size increases, the Monte Carlo
critical values should approximate the corresponding critical
tables values. Additional analyses show results which follow the
expected trend, however, the size of the n's required to achieve
a satisfactory sampling distribution is prohibitively large, as
many as several hundred.

Thomas (personal communication, November 6, 1984) suggests
three approaches for improving this situation. The following
discussion of these three approaches depends heavily upon Thomas'
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remarks. In the first approach, Thomas suggests replacing n in
in Equation 20 with the value (n-g), where g is the number of
groups. In the single group case, this replacement value is
(n-1). This modification of the Chi-square is offered by Thomas
to improve, not correct, the Type I error rate problem. As
Thomas notes, this modification is similar to a modification for
a likelihood ratio criteria described by Anderson (1958, p. 249).
This modified test was examined in the same fashion as was the
original test. The correction did decrease the Type I error
rate, but not satisfactorily (Robey, 1985).

Thomas' second suggestion for improving the Type I error
problem is to determine a multiplier, C, for the likelihood ratio
criteria, w, in the expression -2In(co). This expression is an
equivalent form of Equation 20. Here, is given by

1 n/2E*

a) (22)

n(k-1)/2

"1.4

E

1=1 (k-1)

Here, E* is the doubly multivariate sums of squares and cross
products matrix (SSCP) given by Equation 14, and the Ei are the
p x p SSCP matrices for the dependent variables at each of the k
occasions. The multiplier, C, would be a correction factor which
would cause the first two moments of w to agree with a Chi-square
distribution on an appropriate number of degrees of freedom.
Based upon the correction factor described by Morrison (1967, p.
153) for Box's M test, Thomas speculates that reasonable Type I
error control might be achieved with this correction factor and
an n (per group) of twenty or more.

The third approach suggested by Thomas would be to determine
the exact distribution of w. This would parallel the work of
Nagarsenker and Pillai (1973), among others, in determining the
exact distribution of w in Equation 10. Ultimately, one would
prefer this solution.

Statistical Power of the Multivariate F Tests

Davidson (1972) showed that the manner in which the mean
differences among the k occasions relate to the structure of a
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non-spherical variance-covariance matrix can dramatically change
the statistical powers of the multivariate and the mixed model
tests. A similar power differential can also be observed in the
case where p > 1. Consider the three data sets in Table 18. The
research design for each of these data sets is a repeated
measures design where k = 3 and p = 2. Each of these data sets
share the variance-covariance matrix, and the orthonormally
transformed SSCP matrix, found in Table 19. As a result, the
Mauchly-Thomas Chi-square for all three data sets are equal.

All three data sets represent a situation where relatively
large variances were obtained at the first occasion, and smaller
variances were obtained in the occasions which follow in time.
In real terms, this could reflect a population with some
ameliorating clinical disorder. That is, as some treatment is
imposed over time, the subjects become more homogeneous.

In data set A, the measures obtained on the second and third
occasions are fairly stable, while the mean scores on both of
these occasions are substantially different from the mean scores
obtained on the first occasion. In this situation, the subjects
respond to treatment and then plateau as they become more
homogeneous. The multivariate mixed model F test in this case is
5.79 on 4 and 34 degrees of freedom (p = .0012). However, the
doubly multivariate F test does not detect the mean differences
with an F of 75 on 2 and 6 degrees of freedom (p = .1143). If a
data analyst did not conduct the multivariate mixed model test on
the basis of the Mauchly-Thomas Chi-square statistic (Chi-square
= 50.02; df = 7.5, p < .005), the treatment effect could be
overlooked. Currently, we are examining a conservative
multivariate mixed model test which can detect these differences
with acceptable, albeit conservative, Type I error control.

Data sets B and C represent the multivariate extension of
Davidson's (1972, p. 451) 'small but reliable' treatment effect.
In both cases, small treatment effects are present between
occasions 2 and 3 where the variances are relatively small. The
multivariate mixed model F test is not at all sensitive to these
treatment effects.

Data set B could represent a situation where some treatment
is introduced between periods of no treatment for base line and
extinction. Here, the multivariate mixed model F test is 0.62
(df = 4,34; p = .6496), while the doubly multivariate F test
equals 25.02 (df = 4,6; p = .0007).

In data set C, the measures increase on the third occasion
after remaining stable on the first two. In this case, the
multivariate mixed model F test equals .74 (df = 4,34; p =
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.5723), and the multivariate mixed model F equals 14.53 (df =
4,6; p = .0031.

Two additional aspects of these data sets represent
multivariate extensions of Davidson's (1972) findings. First,
combinations of the treatment effects found in the three data
sets are possible, and are probably likely in practice. The
second extension concerns the relative power of the two tests.
As seen in Cases B and C, the multivariate mixed model F test may
completely miss a treatment effect which can be detected by the
doubly multivariate F test. However, although the doubly
multivariate mixed model F test does not achieve significance in
Case A, it is not completely blind to the effect. In fact, with
more subjects, the effect would be detected.

Data Analysis Strategies

The data analysis strategies in this section were developed
from a perspective which relates hypothesis testing and
inferential statistics by means of an exploratory - confirmatory
continuum. The questions a researcher asks in an exploratory
phase of research are more general in nature. These questions
are best answered by omnibus, or overall, tests. In a
confirmatory phase of research, a researcher is in a position to
ask specific questions. Answering these questions may require
the application of a priori contrasts. From this perspective,
then, two data analysis strategies are offered; one for
exploratory research, and one for confirmatory research.

Exploratory phase of research. In an exploratory stage, the
practitioner faced with analyzing data from a single group
repeated measures design with multiple measures per occasions
must make two difficult decisions. The first decision concerns
the preliminary testing for multivariate sphericity. Based upon
the results of this study, applying the Mauchly-Thomas Chi-square
test seems appropriate only with a large sample size, i.e., 100
to 200 or more, depending upon the size of k. If a preliminary
test of multivariate sphericity is desired with smaller sample
sizes, certainly the modified Mauchly-Thomas Chi-square test
should be used. However, with smaller sample sizes, unless the
multivariate sphericity assumption is known to be true, the
practitioner might just as well forego a preliminary test of
multivariate sphericity and assume a departure from multivariate
sphericity exists in the data.

Secondly, the practitioner must choose a test statistic to
detect treatment effects. If the multivariate sphericity
assumption is known to be true, the multivariate mixed model test
is indicated considering its greater number of denominator
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degrees of freedom. Since the doubly multivariate test and the
multivariate mixed model tests may be sensitive to different
patterns of treatment effects under a departure from multivariate
sphericity, both the doubly multivariate and the multivariate
mixed model tests should be conducted. Obviously, in the absence
of a corrected, or a conservative, multivariate mixed model test,
the situation remains difficult. The importance of maximizing
sample size so that the doubly multivariate test might detect
treatment effects of the magnitude which the experimenter
con.iders important, must not be overlooked.

Barcikowski and Robey (1984a, 1984b) have suggested
conducting both the multivariate and the corrected mixed model
test for the p = 1 case under a departure from sphericity. In
order to maintain Type I error control, they suggested splitting
the a priori alpha level equally between the two tests. This
protective measure seems appropriate at the p > 1 level as well.

Confirmatory stage of research. In a confirmatory stage, it
seems very reasonable to extend Rogan, Keselman and Mendoza's
(1979) recommendation for the p = 1 case that the practitioner
conduct a priori cell comparison contrasts instead of an omnibus
test. At the multiple measure per occasion level, a priori
contrasts are appealing for two reasons. First, using a
partitioned error for a multivariate mixed model contrast causes
the multivariate sphericity assumption to be trivially satisfied.
Therefore, the need for conducting a preliminary test of the
multivariate sphericity assumption is eliminated. Second, the F
statistic obtained on a multivariate mixed model contrast, using
a partitioned error, is the same as that F obtained on a doubly
multivariate contrast. Thus, the choice of a test statistic is
no longer an issue. Type I error for this approach should be
controlled by setting an a priori familywise alpha level.

This approach is recommended for the researcher who is in a
position to formulate a set of specific hypotheses contrasting
various levels of the independent variable. It is not
recommended as a substitute for tha omnibus test through the
examination of all possible pair comparisons.
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Appendix

This appendix contains tables of actual alpha levels, as well as
tables of Monte Carlo critical values for all three multivariate tests in
each Monte Carlo problem. In addition, this appendix contains tables which
relate to the example data sets.
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Actual Simple Sizes for each Combination of k, p and n

k=3 k=5 k=7
n p=2 p=3 p=2 p=3 p=2 p=3

n1 7 11 15 9 15 21

n2 14 18 22 16 22 28

n3 24 28 32 26 32 38

Note. The three sample sizes (n1 = (k-l)p + 3, n2 = (k-l)p + 10, and
n2 = (k-l)p + 20).
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Table 2

Actual Alpha Values of the Doubly Multivariate F Statistic Under
Multivariate Sphericity

rho n

k=3
p=2 p=3

k=5
p=2 p=3

k=7
p=2 p=3

n1 .013 .008 .009 .015 .009 .010

.054 .050 .046 .059 .055 .052

r
1

n
2

.013 .010 .008 .007 .006 .009

.056 .046 .040 .053 .043 .047

n
3

.010 .010 .013 .016 .007 .013

.054 .049 .047 .059 .048 .044

n1 .009 .007 .011 .014 .007 .013

.044 .045 .048 .048 .049 .053

r
2

n
2

.009 .014 .010 .009 .010 .009

.048 .056 .048 .046 .049 .044

n
3

.010 .011 .007 .011 .011 .011

.054 .043 .045 .044 .046 .051

n1 .011 .009 .011 .011 .011 .013

.050 .049 .049 .046 .054 .057

r
3 n

2
.007 .012 .010 .009 .011 .009

.052 .049 .053 .047 .054 .048

n
3

.007 .010 .009 .008 .008 .013

.046 .057 .047 .052 .042 .055

Note. Monte Carlo problems are defined by combinations of the k
occasions, the p measures, the three sample sizes (n1 = (k-1)p + 3, n2 =
(k-1)p + 10, n3 = (k-1)p + 20), and the three correlations among the
dependent measures across occasions (ri = .2, r2 = .5, r3 = .8). Note that
the double entries for each Monte Carlo problem represent nominal alpha at
.01 (top), and at .05 (bottom). An asterisk indicates a significant (p >
.01) departure from the nominal alpha.
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Table 3

Actual Alpha Values of the Doubly Multivariate F Statistic Under a Mild
Departure from Multivariate Sphericity

rho n
k=3

p=2 p=3
k=5

p=2 p=3
k=7

p=2 p=3

.009 .011 .008 .013 .014 .015

.045 .046 .039 .053 .054 .058

r
1

n
2

.013 .013 .009 .009 .007 .007

.044 .053 .047 .053 .052 .051

n3 .008 .010 .005* .010 .009 .007

.052 .044 .050 .050 .050 .054

.009 .008 .008 .011 .014 .014

.049 .047 .046 .050 .055 .051

r2 n2 .010 .009 .013 .006 .009 .013

.052 .048 .054 .044 .042 .050

n3 .013 .009 .011 .008 .010 .007

.051 .052 .048 .047 .048 .041

ni .006 .008 .013 .011 .010 .011

.044 .044 .054 .059 .054 .054

r3 n
2

.010 .009 .009 .011 .009 .010

.046 .048 .041 .050 .052 .051

n3 .012 .009 .014 .009 .012 .006

.048 .048 .060 .047 .049 .057

Note. Monte Carlo problems are defined by combinations of the k
occasions, the p measures, the three sample sizes (ni = (k -1)p + 3, n2 =
(k -1)p + 10, n2 = (k-1)p + 20), and the three correlations among the
dependent measures across occasions (r1 = .2, r2 = .5, r3 = .8). Note that
the double entries for each Monte Carlo problem represent nominal alpha at
.01 (top), and at .05 (bottom). An asterisk indicates a significant (p
.01) departure from the nominal alpha,
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Table 4

Actual Alpha Values of the Doubly Multivariate F Statistic Under a Moderate
Departure from Multivariate Sphericity

rho n p=2
k=3 k=5

p=3 p=2 p=3
k=7

p=2 p=3

n1 .009 .008 .008 .010 .005 .013

.040 .042 .045 .050 .042 .044

r
1

n2 .008 .010 .010 .010 .012 .011

.056 .052 .049 .046 .058 .048

n
3 .013 .009 .010 .011 .015 .009

.049 .038* ..044 .051 .059 .055

n1 .014 .011 .012 .010 .009 .009

.048 .048 .049 .047 .044 .044

r2 n2 .009 .010 .013 .009 .008 .011

.055 .049 .049 .048 .043 .046

n
3 .012 .011 .013 .010 .010 .012

.051 .048 .051 .050 .046 .044

n1 .014 .011 .009 .014 .013 .009

.052 .049 .045 .053 .050 .053

r3 n
2

.012 .010 .007 .008 .011 .008

.052 .051 .052 .045 .054 .054

n3 .011 .011 .011 .018* .008 .013
.058 .051 .050 .058 .049 .059

Note. Monte Carlo problems are defined by combinations of the k
occasions, the p measures, the three sample sizes (n1 = (k-1)p + 3, nz =
(k-1)p + 10, n3 = (k-1)p + 20), and the three correlations among the
dependent measures across occasions (r1 = .2, r2 = .5, r3 = .8). Note that
the double entries for each Monte Carlo problem represent nominal alpha at
.01 (top), and at .05 (bottom). An asterisk indicates a significant (p >
.01) departure from the nominal alpha.
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Table 5

Actual Alpha Values of the Mixed Model Multivariate F Statistic Under
Multivariate Sphericity

rho n
k=3

p=2 p=3
k=5

p=2 p=3
k=7

p=2 p=3

ni .008 .012 .011 .005 .007 .013

.056 .056 .045 .040 .041 .053

r
1

n
2

.012 .008 .006 .008 .008 .011

.054 .053 .044 .055 .053 .053

n3 .012 .007 .013 .011 .010 .012

.050 .049 .053 .056 .047 .059

ni .008 .004* .013 .008 .010 .011

.049 .044 .054 .047 .053 .043

r2 u2 .009 .013 .008 .007 .007 .012

.050 .046 .057 .044 .048 .053

n 3 .011 .009 .012 .006 .009 .009

.046 .053 .049 .044 .051 .049

ni .006 .009 .012 .012 .008 .008

.053 .054 .055 .049 .051 .047

r3 n2 .007 .007 .013 .011 .011 .008

.049 .048 .059 .045 .050 .049

n 3 .007 .015 .011 .014 .015 .012

.046 .059 .058 .047 .044 .044

Note. Monte Carlo problems are defined by combinations of the k
occasions, the p measures, the three sample sizes (ni = (k-1)p + 3, n2 =
(k-1)p + 10, n3 = (k-1)p + 20), and the three correlations among the
dependent measures across occasions (r, = .2, r2 = .5, r3 = .8). Note that
the double entries for each Monte Carlo problem represent nominal alpha at
.01 (top), and at .05 (bottom). An asterisk indicates a significant (p >
.01) departure from the nominal alpha.
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Table 6

Actual Alpha Values of the Mixed Model Multivariate F Statistic Under a
Mild Departure from Multivariate Sphericity

rho n
k=3

p=2 p=3

k=5
p=2 p=3

k=7
p=2 p=3

ni .012 .013 .014 .008 .010 .012
.049 .051 .051 .051 .G46 .054

r1 n2 .012 .011 .012 .G11 .008 .013
.048 .055 .051 .052 .049 .054

n3 .010 .008 .014 .013 .010 .010
.053 .054 .051 .056 .050 .060

nl .013 .009 .011 .013 .009 .014
.050 .052 .056 .054 .049 .054

r 2 n2 .012 .016 .012 .012 .011 .009
.048 .071* .056 .055 .054 .048

n3 .013 .012 .012 .009 .011 .010
.057 .052 .049 .050 .063 .052

.015 .009 .012 .014 .014 .012

.043 .051 .052 .056 .063 .057

r3 n2 .013 .014 .012 .012 .012 .012
.063 .045 .053 .056 .062 .056

n
3

.015 .014 .012 .013 .014 .010

.055 .051 .059 .051 .056 .054

Note. Monte Carlo problems are defined by combinations of the k
occasions, the p measures, the three sample sizes (n1 = (k-1)p + 3, n2 =
(k-1)p + 10, n3 = (k-1)p + 20), and the three correlations among the
dependent measures across occasions (r1 = .2, r2 = .5, r2 = .8). Note that
the double entries for each Monte Carlo problem represent nominal alpha at
.01 (top), and at .05 (bottom). An asterisk indicates a significant (p >
.01) departure from the nominal alpha.
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Table 7

Actual Alpha Values of the Mixed Model Multivariate F Statistic Under a
Moderate Departure from Multivariate Sphericity

rho n

k=3

p=2 p=3
k=5

p=2 p=3
k=7

p=2 p=3

n1 .022* .019* .022* .013 .023* .021*
.067* .063 .075* .069* .071* .067*

ri n2 .020* .021* .022* .021* .022* .015

.074* .062 .073* .065* .079* .061

n
3

.020* .021* .021* .021* .026* .021*

.070* .073* .069* .075* .084* .071*

n1 .017* .019* .022* .018* .026* .028*
.058 .071* .069* .076* .072* .075*

r 2 n
2

.016 .026* .021* .011 .024* .019*

.061 .079* .068* .062 .072* .070*

n
3

.022* .024* .023* .016 .021* .022*

.064* .066* .066* .069* .068* .072*

n1 .024* .018* .014 .022* .018* .026*

.074* .075* .065* .081* .070* .080*

r 3 n
2

.020* .022* .016 .025* .019* .028*

.067* .071* .069* .093* .070* .077*

n3 .026* .016 .023* .026* .018* .033*
.070* .073* .071* .076* .068* .086*

Note. Monte Carlo problems are defined by combinations of the k
occasions, the p measures, the three sample sizes (n1 = (k-1)p + 3. n2 =
(k-1)p + 10, n2 = (k-1)p + 20), and the three correlations among ....he
dependent measures across occasions (ri = .2, r2 = .5, r3 = .8). Note that
the double entries for each Monte Carlo problem represent nominal alpha at
.01 (top), and at .05 (bottom). An asterisk indicates a significant (p
.01) departure from the nominal alpha.
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Table 8

Actual Alpha Values of the Mauchly-Thomas Chi-square Statistic Under
Multivariate Sphericity

rho n
k=3

p=2 p=3

k=5
p=2 p=3

k=7

p=2 p=3

n1 .174* .349* .532* .866* .873* .994*
.352* .547* .737* .949* .954* .998*

r1 n2 .045* .081* .144* .387* .391* .837*
.133* .211* .320* .612* .634* .946*

n
3

.026* .029* .063* .145* .157* .464*

.087* .128* .173* .328* .353* .699*

n, .173* .332* .526* .880* .873* .997*
.341* .552* .738* .959* .950* 1.000*

r
2

n2 .043* .089* .139* .370* .376* .833*
.145* .215* .312* .609* .612* .943*

n3 .030* .043* .055* .149* .152* .470*
.094* .138* .174* .358* .333* .714*

ni .167* .339* .528* .856* .872* .996*
.342* .555* .721* .948* .959* .999*

r
3

n2 .049* .076* .151* .373* .373* .824*
.154* .212* .336* .605* .608* .933*

n3 .027* .034* .060* .165* .143* .483*
.093* .130* .173* .365* .335* .712*

Note. Monte Carlo problems are defined by combinations of the k
occasions, the p measures, the three sample sizes (n1 = (k-1)p + 3, n2 =
(k-1)p + 10, n3 = (k-1)p + 20), and the three correlations among the
dependent measures across occasions (r1 = .2, r2 = .5, r2 = .8). Note that
the double entries for each Monte Carlo problem represent nominal alpha at
.01 (top), and at .05 (bottom). An asterisk indicates a significant (p >
.01) departure from the nominal alpha.
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Table 9

Proportions of Rejection for the Mauchly-Thomas Chi-square Statistic Under
a Mild Departure from Multivariate Sphericity

rho n
k=3

p=2 p=3
k=5

p=2 p=3
k=7

p=2 p=3

n1 .185 .377 .595 .918 .932 1.000
.366 .585 .790 .974 .981 1.000

r1 n2 .077 .137 .241 .573 .613 .943
.212 .307 .466 .778 .815 .988

n
3

.078 .118 .183 .384 .452 .842

.224 .290 .382 .647 .703 .947

n1 .192 .378 .608 .919 .912 1.000
.381 .600 .794 .978 .974 1.000

r2 n2 .073 .134 .260 .576 .615 .955
.195 .314 .478 .786 .808 .988

n2 .078 .111 .186 .382 .419 .837
.213 .274 .392 . .648 .675 .948

ni .193 .392 .600 .929 .929 .998
.384 .603 .792 .982 .977 1.000

r3 n
2

.073 .144 .247 .578 .601 .950

.208 .340 .462 .780 .812 .985

n 3 .078 .123 .197 .412 .451 .819
.229 .288 .417 .652 .688 .946

Note. Monte Carlo problems are defined by combinations of the k
occasions, the p measures, the three sample sizes (n1 = (k-1)p + 3, n2 =
(k-1)p + 10, n2 = (k-1)p + 20), and the three correlations among the
dependent measures across occasions (r, = .2, r2 = .5, r3 = .8). Note that
tha double entries for each Monte Carlo problem represent nominal alpha at
.01 (top), and at .05 (bottom).
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Table 10

Proportions of Rejection for the Mauchly-Thomas Chi-square Statistic Under
a Moderate Departure from Multivariate Sphericity

rho n p=2
k=3

p=3 p=2

k=5

p=3 p=2
k=7

p=3

n1 .369 .634 .848 .993 .994 1.000
.599 .839 .937 .998 .998 1.000

n
2 .483 .726 .810 .986 .992 1.000

.715 .878 .930 .998 .998 1.000

n
3

.809 .924 .936 .996 .999 1.000

.929 .982 .982 1.000 1.000 1.000

ni .379 .659 .860 .993 .995 1.000
.612 .843 .952 .998 .999 1.000

r 2 n 2 .505 .741 .807 .981 .995 1.000
.726 .899 .936 .996 .998 1.000

n3 .810 .927 .943 .996 .999 1.000
.939 .985 .984 .999 1.000 1.000

n1 .385 .660 .856 .993 .995 1.000
.591 .840 .951 .999 1.000 1.000

r3 n 2 .499 .712 .812 .984 .996 1.000
.715 .887 .937 1.000 1.000 1.000

n3 .800 .932 .947 .994 .999 1.000
.931 .985 .990 .999 1.000 1.000

Note. Monte Carlo problems are defined by combinations of the k
occasions, the p measures, the three sample sizes (ni = (k -1)p + 3, n2 =
(k -1)p + 10, n2 = (k-l)p + 20), and the three correlations among the

dependent aeasures across occasions (r1 = .2, r2 = .5, r2 = .8). Note that
the double entries for each Monte Carlo problem represent nominal alpha at
.01 (top), and at .05 (bottom).
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Table 11

Tabled Critical Values and Monte Carlo Critical Values for the Doubly
Multivariate F Test Under Multivariate Sphericity with Two Dependent
Variables per Occasion

Tabled
Monte Carlo Critical Values

k n Value r = .2 r = .5 r = .8

3 n1 28.71 33.04 28.05 29.56
9.12 9.79 8.31 9.25

3 n2 5.99 6.57 5.70 5.72
3.48 3.62 3.38 3.52

3 n 3 4.43 4.43 4.43 4.26
2.87 2.95 2.92 2.80

5 n1 27.50 24.53 28.66 30.64
8.55 8.52 8.51 8.61

5 n2 5.06 4.76 5.05 4.76
3.07 2.82 3.04 3.18

5 n 3 3.56 3.70 3.55
2.45 2.37 2.38 2.39

7 n1 27.03 25.35 22.16 30.76
8.74 9.32 8.58 9.26

7 n2 4.71 4.29 4.64 4.88
2.91 2.77 2.90 2.97

7 n2 3.23 2.98 3.27 3.12
2.28 2.25 2.22 2.17

Note. Sample sizes are defined as n1 = (k -1)p + 3, n2 = (k -1)p + 10,
and n2 = (k -1)p + 20. The values of r are the constant correlations among
the dependent variables across occasions. The double entries for each
Monte Carlo problem represent alpha levels of .01 (top) and .05 (bottom).
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Table 12

Tabled Critical Values and Monte Carlo Critical Values for the Doubly
Multivariate F Test Udder Multivariate Sphericity with Three Dependent
Variables per Occasion

Tabled
Monte Carlo Critical Values

k n Value r = .2 r = .5 r = .8

3 n1 27.91 25.16 23.67 27.63
8.94 8.94 8.27 8.72

3 n
2 5.39 5.30 5.59 5.54

3.22 3.15 3.37 3.18

3 n 3 3.87 3.84 3.92 3.82
2.60 2.57 2.49 2.65

5 n, 27.03 35.12 33.48 27.34
8.74 10.14 8.49 8.19

5 n2 4.71 4.35 4.63 4.56
2.91 3.02 2.84 2.88

5 n 3 3.23 3.70 3.24 3.08
2.28 2.37 2.23 2.30

7 n, 26.77 26.43 37.41 29.98
8.67 9.23 8.86 9.28

7 n2 4.46 4.40 4.32 4.37
2.80 2.74 2.72 2.76

7 n2 2.99 3.04 3.03 3.24
2.15 2.11 2.17 2.19

Note. Sample sizes are defined as n, = (k -1)p + 3, n2 = (k -1)p + 10,
and n2 = (k -1)p + 20. The values of r are the constant correlations among
the dependent variables across occasions. The double entries for each
Monte Carlo problem represent alpha levels of .01 (top) and .05 (bottom).
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Table 13

Tabled Critical Values and Monte Carlo Critical Values for the Multivariate
Mixed Model F Test Under Multivariate Sphericity with Two Dependent
Variables per Occasion

Tabled
Monte Carlo Critical Values

k n Value r = .2 r = .5 r = .8

3 n1 4.14 4.24 4.10 4.15
2.74 2.90 2.79 2.90

3 n2 3.69 3.86 3.65 3.42
2.54 2.62 2.56 2.52

3 n2 3.53 3.73 3.68 3.39
2.47 2.48 2.45 2.40

5 n1 2.73 2.78 2.84 2.81
2.05 2.01 2.12 2.13

5 n2 2.64 2.49 2.59 2.77
2.00 1.96 2.06 2.07

5 n2 2.59 2.69 2.65 2.60
1.98 2.01 1.97 2.06

7 n1 2.29 2.17 2.28 2.23
1.81 1.74 1.82 1.82

7 n2 2.25 2.19 2.19 2.28
1.79 1.80 1.78 1.78

7 n2 2.23 2.22 2.19 2.35
1.78 1.77 1.78 1.74

Note. Sample sizes are defined as nl = (k-1)p + 3, n2 = (k-1)p + 10,
and n2 = (k-1)p + 20. The values of r are the constant correlations among
the dependent variables across occasions. The double entries for each
Monte Carlo problem represent alpha levels of .01 (top) and .05 (bottom).
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Table 14

Tabled Critical Values and Monte Carlo Critical Values for the Multivariate
Mixed Model'F Test Under Multivariate Sphericity with Three Dependent
Variables per Occasion

Tabled
Monte Carlo Critical Values

k n Value r = .2 r = .5 r = .8

3 n, 3.43 3.58 3.13 3.52
2.40 2.54 2.38 2.49

3 n 2 3.12 3.04 3.27 2.97
2.25 2.30 2.22 2.24

3 n 3 2.99 2.96 2.92 3.10
2.19 2.18 2.21 2.24

5 n1 2.30 2.23 2.28 2.34
1.82 1.77 1.81 1.81

5 n 2 2.26 2.22 2.21 2.28
1.79 1.83 1.75 1.77

5 n 3 2.24 2.25 2.16 2.33
1.78 1.80 1.74 1.75

7 n1 1.99 2.05 2.05 1.92
1.63 1.66 1.61 1.62

7 n2 1.97 1.98 2.03 1.93
1.63 1.64 1.65 1.62

7 n 3 1.96 2.09 1.95 2.03
1.62 1.64 1.61 1.60

Note. Sampe sizes are defined as n, = (k-1)p + 3, n2 = (k-1)p + 10,
and n3 = (k-1)p + 20. The values of r are the constant correlations among
the dependent variables across occasions. The double entries for each
Monte Carlo problem represent alpha levels of .01 (top) and .05 (bottom).
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Table 15

Tabled Critical Values and Monte Carlo Critical Values for the
Mauchly-Thomas Chi-square Test Under Multivariate Sphericity with Two
Dependent Variables per Occasion

Tabled
Monte Carlo Critical Values

Value r = .2 r = .5 r = .8

3 n1 18.47 34.32 34.29 34.30
14.07 25.28 25.32 26.00

3 n2 18.47 24.93 23.80 23.67
14.07 17.91 17.62 18.35

3 n
3 18.47 20.95 20.96 22.08

14.07 15.80 16.39 16.33

5 n1 54.80 105.67 96.78 98.80
47.41 84.04 84.72. 84.01

5 n2 54.80 72.65 71.56 72.53
47.41 62.61 62.90 63.43

5 n2 54.80 63.60 66.68 63.14
47.41 56.50 55.14 55.66

7 n1 106.41 176.39 167.30 165.39
96.21 166.24 170.22 160.87

7 n2 106.41 147.63 149.06 145.00
96.21 130.30 132.55 130.82

7 n
3

106.41 130.16 128.47 127.13
96.21 118.20 116.93 115.68

Note. Sample sizes are defined as ni = (k-1)p + 3, n2 = (k-1)p + 10,
and n2 = (k-1)p + 20. The values of r are the constant correlations among
the dependent variables across occasions. The double entries for each
Monte Carlo problem represent alpha levels of .01 (top) and .05 (bottom).
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Table 16

Tabled Critical Values and Monte Carlo Critical Values for the
Mauchly-Thomas Chi-square Test Under Multivariate Sphericity witn Three
Dependent Variables per Occasion

Tabled
Monte Carlo Critical Values

k n Value r = .2 r = .5 r = .8

3 n1 30.61 60.25 57.57 59.34
25.00 47.17 46.23 47.02

3 n2 30.61 39.48 42.29 39.53
25.00 33.10 33.70 33.03

3 n3 30.61 34.96 36.30 36.93
25.00 28.45 29.84 29.21

5 n1 102.83 169.15 159.84 159.85
92.80 157.00 158.20 157.96

5 n2 102.83 143.14 144.86 140.17
92.80 127.48 128.93 128.56

5 n3 102.83 123.55 124.65 125.74
92.80 112.94 112.77 112.93

7 ni 210.19 326.41 33J.61 298.72
195.97 367.16 315.91 343.11

7 n2 210.19 289.02 290.93 288.46
195.97 281.96 295..5 274.80

7 n3 210.19 266.85 268.15 271.65
195.97 246.39 250.44 251.63

Note. Sample sizes are defined as n, = (k-1)p + 3, n2 = (k-1)p + 10,
and n3 = (k-1)p + 20. The values of r are the constant correlations among
the dependent variables across occasions. The double entries for each
Monte Carlo problem represent alpha levels of .01 (top) and .05 (bottom).
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Table 17

Monte Carlo Problems Where the Null Hypothesis of the Proportions Test was
not Rejected When Applied to the Multivariate Mixed Model Actual Alpha
Rates

Departure from
Multivariate
Sphericity

Correlation
Among p
Across k k p n

Nominal
Alpha

1. moderate .2 3 3 (k-1)p+3 .05

2. moderate .2 5 3 (k-1)p+3 .01

3. moderate .2 3 3 (k-1)p+10 .05

4. moderate .2 7 3 (k-1)p+10 .01

5. moderate .2 7 3 (k-1)p+10 .05

6. moderate .5 3 2 (k-1)p+3 .05

7. moderate .5 3 2 (k-1)p+10 .01

8. moderate .5 3 2 (k-1)p+10 .05

9. moderate .5 5 3 (k-1)p+10 .01

10. moderate .5 5 3 (k-1)p+10 .05

11. moderate .5 5 3 (k-1)p+20 .01

12. moderate .8 5 2 (k-1)p+10 .01

13. moderate .8 5 2 (k-1)p+20 .01

14. moderate .8 3 3 (k-1)p+20 .01
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Table 18

Three Example Data Sets
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P P

Case 'kkk k k k

34 58 58 168 169 172

54 62 62 176 178 179

26 55 56 149 169 168

30 58 61 141 173 174

A 16 54 53 132 171 170

63 60 62 180 179 172

51 61 59 166 177 178

47 56 56 137 171 172

68 64 63 163 175 176

23 56 53 143 172 168

Mean 41.2 58.4 58.3 155.5 173.4 172.9

B

34 37 43

54 41 47

26 34 41

30 37 46

16 33 38

63 39 47

51 40 44

47 35 41

68 43 48

23 35 38

168 148 157

176 157 164

149 148 153

141 152 159

132 150 155

180 158 157

166 156 163

137 150 157

163 154 161

143 151 153

Mean 41.2 37.4 43.3 155.5 152.4 157.9

C

34 42 46

54 46 50

26 39 44

30 42 49

16 38 41

63 44 50

51 45 47

47 40 44

68 48 51

23 4C 41

168 152 161

176 161 168

149 152 157

141 156 163

132 154 159

180 162 161

166 160 167

137 154 161

163 158 165

143 155 157

Mean 41.2 42.4 46.3 155.5 156.4 161.9
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Table 19

The Variance-Covariance Matrix and the Orthonormally Transformed SSCP
Matrix for the Example Data

317.96 50.69 53.82 220.44 48.24 46.36
10.71 10.64 42.56 8.93 10.49

13.79 46.06 9.31 10.59
294.06 42.11 36.72

13.38 9.71
(sym) 14.77

1008.45 -582.17 623.80 -343.70
355.35 -377.82 206.97

1059.20 -557.26
(sym) 342.73
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Note. The variance-covariance matrix is the upper matrix while the
orthonormally transformed SSCP matrix is the lower matrix. The variables
in the variance covariance matrix are grouped first by p, and ordered by k
within p.
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